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Limited initial supply of SARS-CoV-2 vaccine raises the question of how to prioritize available doses. Here,
we used a mathematical model to compare five age-stratified prioritization strategies. A highly effective
transmission-blocking vaccine prioritized to adults ages 20-49 years minimized cumulative incidence, but
mortality and years of life lost were minimized in most scenarios when the vaccine was prioritized to adults

over 60 years old. Use of individual-level serological tests to redirect doses to seronegative individuals
improved the marginal impact of each dose while potentially reducing existing inequities in COVID-19
impact. While maximum impact prioritization strategies were broadly consistent across countries,
transmission rates, vaccination rollout speeds, and estimates of naturally acquired immunity, this
framework can be used to compare impacts of prioritization strategies across contexts.

SARS-CoV-2 has caused a public health and economic crisis
worldwide. As of January 2021, there have been over 85 mil-
lion cases and 1.8 million deaths reported (Z). To combat this
crisis, a variety of non-pharmaceutical interventions have
been implemented, including shelter-in-place orders, limited
travel, and remote schooling. While these efforts are essential
to slowing transmission in the short term, long-term solu-
tions—such as vaccines that protect from SARS-CoV-2 infec-
tion— remain urgently needed. The benefits of an effective
vaccine for individuals and their communities have resulted
in widespread demand, so it is critical that decision-making
on vaccine distribution is well motivated, particularly in the
initial phases when vaccine availability is limited (2).

Here, we employ a model-informed approach to quantify
the impact of COVID-19 vaccine prioritization strategies on
cumulative incidence, mortality, and years of life lost. Our ap-
proach explicitly addresses variation in three areas that can
influence the outcome of vaccine distribution decisions. First,
we consider variation in the performance of the vaccine, in-
cluding its overall efficacy, a hypothetical decrease in efficacy
by age, and the vaccine’s ability to block transmission. Sec-
ond, we consider variation in both susceptibility to infection
and the infection fatality rate by age. Third, we consider var-
iation in the population and policy, including the age distri-
bution, age-stratified contact rates, and initial fraction of
seropositive individuals by age, and the speed and timing of
the vaccine’s rollout relative to transmission. While the earli-
est doses of vaccines will be given to front-line health care
workers under plans such as those from the COVAX initiative
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and the US NASEM recommendations (3), our work is fo-
cused on informing the prioritization of the doses that follow.
Based on regulatory approvals and initial vaccine rollout
speeds of early 2021, our investigation focuses generally on
scenarios with a partially mitigated pandemic (R between 1.1
and 2.0), vaccines with protective efficacy of 90%, and rollout
speeds of 0.2% of the population per day.

There are two main approaches to vaccine prioritization:
(1) directly vaccinate those at highest risk for severe outcomes
and (2) protect them indirectly by vaccinating those who do
the most transmitting. Model-based investigations of the
tradeoffs between these strategies for influenza vaccination
have led to recommendations that children be vaccinated due
to their critical role in transmission (4, 5) and have shown
that direct protection is superior when reproduction num-
bers are high but indirect protection is superior when trans-
mission is low (6). Similar modeling for COVID-19
vaccination has found that the optimal balance between di-
rect and indirect protection depends on both vaccine efficacy
and supply, recommending direct vaccination of older adults
for low-efficacy vaccines and for high-efficacy but supply-lim-
ited vaccines (7). Rather than comparing prioritization strat-
egies, others have compared hypothetical vaccines, showing
that even those with lower efficacy for direct protection may
be more valuable if they also provide better indirect protec-
tion by blocking transmission (8). Prioritization of transmis-
sion-blocking vaccines can also be dynamically updated
based on the current state of the epidemic, shifting prioriti-
zation to avoid decreasing marginal returns (9). These efforts
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to prioritize and optimize doses complement other work
showing that, under different vaccine efficacy and durability
of immunity, the economic and health benefits of COVID-19
vaccines will be large in the short and medium terms (10).
The problem of vaccine prioritization also parallels the more
general problem of optimal resource allocation to reduce
transmission, e.g., with masks (11).

Evaluation of vaccine prioritization strategies

We evaluated the impact of vaccine prioritization strate-
gies using an age-stratified SEIR model, because age has been
shown to be an important correlate of susceptibility (12-14),
seroprevalence (12, 15), severity (16-18), and mortality (19,
20). This model includes an age-dependent contact matrix,
susceptibility to infection, and infection fatality rate (IFR),
allowing us to estimate cumulative incidence of SARS-CoV-2
infections, mortality due to infection, and years of life lost
(YLL) (supplementary materials, materials and methods) via
forward simulations of one year of disease dynamics . Cumu-
lative incidence, mortality, and YLL were then used as out-
comes by which to compare vaccine prioritization strategies.
These comparisons may be explored using accompanying
open-source and interactive calculation tools that accompany
this study (21).

We first examined the impact of five vaccine prioritization
strategies for a hypothetical infection- and transmission-
blocking vaccine of varying efficacy. The strategies prioritized
vaccines to (1) children and teenagers, (2) adults between
ages 20 and 49 years, (3) adults 20 years or older, (4) adults
60 years or older, and (5) all individuals (Fig. 1A). In all strat-
egies, once the prioritized population was vaccinated, vac-
cines were allocated irrespective of age, i.e., in proportion to
their numbers in the population. To incorporate vaccine hes-
itancy, at most 70% of any age group was eligible to be vac-
cinated (22).

We measured reductions in cumulative incidence, mortal-
ity, and YLL achieved by each strategy, varying the vaccine
supply between 1% and 50% of the total population, under
two scenarios. In Scenario 1, vaccines were administered to
0.2% of the population per day until supply was exhausted,
with R, = 1.15, representing highly mitigated spread during
vaccine rollout. In Scenario 2, vaccines were administered to
0.2% of the population per day until supply was exhausted,
but with R, = 1.5, representing substantial viral growth dur-
ing vaccine rollout (see Fig. 1 for example model outputs). Re-
sults for additional scenarios in which vaccines were
administered before transmission began are described in
Supplementary Text, corresponding to countries without on-
going community spread such as South Korea and New Zea-
land. We considered two ways in which vaccine efficacy (ve)
could be below 100%: an all-or-nothing vaccine, where the
vaccine provides perfect protection to a fraction we of
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individuals who receive it, or as a leaky vaccine, where all
vaccinated individuals have reduced probability ve of infec-
tion after vaccination (supplementary materials, materials
and methods).

Of the five strategies, direct vaccination of adults over 60
years (60+) always reduced mortality and YLL more than the
alternative strategies when transmission was high [R, = 1.5;
Scenario 2; 90% efficacy (Fig. 1); 30%-100% efficacy (fig. S5)].
For lower transmission (R, = 1.15; Scenario 1), vaccination of
adults 20-49 reduced mortality and YLL more than the alter-
native strategies, but differences between prioritization of
adults 20-49, adults 20+, and adults 60+ were small for vac-
cine supplies above 25% (Fig. 1 and fig. S5). Prioritizing adults
20-49 minimized cumulative incidence in both scenarios for
all vaccine efficacies (Fig. 1 and fig. S5). Prioritizing adults 20-
49 also minimized cumulative incidence in both scenarios
under alternative rollout speeds (0.05% to 1% vaccinated per
day) (fig. S6). When rollout speeds were at least 0.3% per day
and vaccine supply covered at least 25% of the population,
the mortality minimizing strategy shifted from prioritization
of ages 20-49 to adults 20+ or adults 60+ for Scenario 1; when
rollout speeds were at least 0.75% per day and covered at least
24% of the population, the mortality minimizing strategy
shifted from prioritization of adults 60+ to adults 20+ or 20-
49 for Scenario 2 (fig. S6). Findings for mortality and YLL
were only slightly changed by modeling vaccine efficacy as
all-or-nothing (fig. S5) or leaky (fig. S7).

Impact of transmission rates, age demographics, and
contact structure

To evaluate the impact of transmission rates on the strat-
egy that most reduced mortality, we varied the basic repro-
ductive number R, from 1.1 to 2.0 when considering a
hypothetical infection- and transmission-blocking vaccine
with 90% vaccine efficacy. We found that prioritizing adults
60+ remained the best way to reduce mortality and YLL for
Ry = 1.3, but prioritizing adults 20-49 was superior for Ry <
1.2 (Fig. 2, A and B, and fig. S8). Prioritizing adults 20-49 min-
imized infections for all values of R, investigated (fig. S8).

To determine whether our findings were robust across
countries, we analyzed the ranking of prioritization strategies
for populations with the age distributions and modeled con-
tact structures of the United States, Belgium, Brazil, China,
India, Poland, South Africa, and Spain. Across these coun-
tries, direct vaccination of adults 60+ minimized mortality
for all levels of vaccine supply when transmission was high
(Ro = 1.5, Scenario 2) (Fig. 2E), but in only some cases when
transmission was lower (R, = 1.15, rollout 0.2% per day, Sce-
nario 1) (Fig. 2D). Decreasing rollout speed from 0.2% to 0.1%
per day caused prioritization of adults 60+ to be favored in
additional scenarios (Fig. 2C). Across countries, vaccination
of adults 20-49 nearly always minimized infections, and
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vaccination of adults 60+ nearly always minimized YLL for
Scenario 2, but no clear ranking of strategies emerged con-
sistently to minimize YLL in Scenario 1 (fig. S9).

Vaccines with imperfect transmission blocking ef-
fects

We also considered whether the rankings of prioritization
strategies to minimize mortality would change if a vaccine
were to block COVID-19 symptoms and mortality with 90%
efficacy but with variable impact on SARS-CoV-2 infection
and transmission. We found that direct vaccination of adults
60+ minimized mortality for all vaccine supplies and trans-
mission-blocking effects under Scenario 2, and for all vaccine
supplies when up to 50% of transmission was blocked in Sce-
nario 1 (supplementary text and fig. S10).

Variation in vaccine efficacy by age

COVID-19 vaccines may not be equally effective across age
groups in preventing infection or disease, a phenomenon
known to affect influenza vaccines (23-26). To understand
the impact of age-dependent COVID-19 vaccine efficacy, we
incorporated a hypothetical linear decrease from a baseline
efficacy of 90% for those under 60 to 50% in those 80 and
older (Fig. 3). As expected, this diminished the benefits of any
prioritization strategy that included older adults. For in-
stance, strategies prioritizing adults 20-49 were unaffected by
decreased efficacy among adults 60+, while strategies priori-
tizing adults 60+ were markedly diminished (Fig. 3). Despite
these effects, prioritization of adults 60+ remained superior
to the alternative strategies to minimize mortality in Scenario
2.

To test whether more substantial age-dependent vaccine
effects would change which strategy minimized mortality in
Scenario 2, we varied the onset age of age-dependent de-
creases in efficacy, the extent to which it decreased, and the
baseline efficacy from which it decreased. We found that as
long as the age at which efficacy began to decrease was 70 or
older and vaccine efficacy among adults 80+ was at least 25%,
prioritizing adults 60+ remained superior in the majority of
parameter combinations. This finding was robust to whether
the vaccine was modeled as leaky vs all-or-nothing, but we
observed considerable variation from country to country (fig.
S11).

Incorporation of population seroprevalence and in-
dividual serological testing

Due to early indications that naturally acquired antibod-
ies correlate with protection from reinfection (27), seroprev-
alence will affect vaccine prioritization in two ways. First,
depending on the magnitude and age distribution of sero-
prevalence at the time of vaccine distribution, the ranking of
strategies could change. Second, distributing vaccines to
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seropositive individuals would reduce the marginal benefit of
vaccination per dose.

To investigate the impact of vaccinating mid-epidemic
while using serology to target the vaccine to seronegative in-
dividuals, we included age-stratified seroprevalence esti-
mates in our model by moving the data-specified proportion
of seropositive individuals from susceptible to recovered sta-
tus. We then simulated two approaches to vaccine distribu-
tion. In the first, vaccines were distributed according to the
five prioritization strategies introduced above, regardless of
any individual’s serostatus. In the second, vaccines were dis-
tributed with a serological test, such that individuals with a
positive serological test would not be vaccinated, allowing
their dose to be given to someone else in their age group .

We included age-stratified seroprevalence estimates from
New York City [August 2020; overall seroprevalence 26.9%
(28)] and demographics and age-contact structure from the
United States in evaluations of the previous five prioritization
strategies. For this analysis, we focused on Scenario 2 (0.2%
rollout per day, R, = 1.5 inclusive of seropositives), and found
that the ranking of strategies to minimize incidence, mortal-
ity, and YLL remained unchanged: prioritizing adults 60+
most reduced mortality and prioritizing adults 20-49 most
reduced incidence, regardless of whether vaccination was
limited to seronegative individuals (Fig. 4). These rankings
were unchanged when we used lower or higher age-stratified
seroprevalence estimates to test the consistency of results
(Connecticut, July 2020, overall seroprevalence 3.4% (29) and
synthetic, overall seroprevalence 39.5%) (figs. S12 and S13).
Despite lowered sensitivity to detect past exposure due to se-
roreversion (30, 31), preferentially vaccinating seronegative
individuals yielded large additional reductions in cumulative
incidence and mortality in locations with higher seropreva-
lence (Figs. 4 and fig. S13) and modest reductions in locations
with low seroprevalence (fig. S12). These results remained un-
changed when statistical uncertainty, due to sample size and
imperfect test sensitivity and specificity, were incorporated
into the model (32).

Discussion

This study demonstrated the use of an age-stratified mod-
eling approach to evaluate and compare vaccine prioritiza-
tion strategies for SARS-CoV-2. After accounting for country-
specific age structure, age-contact structure, infection fatality
rates, and seroprevalence, as well as the age-varying efficacy
of a hypothetical vaccine, we found that across countries
those aged 60 and older should be prioritized to minimize
deaths, assuming a return to high contact rates and pre-pan-
demic behavior during or after vaccine rollout. This recom-
mendation is robust because of the dramatic differences in
IFR by age. Our model identified three general regimes in
which prioritizing adults aged 20-49 would provide greater
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mortality benefits than prioritizing older adults. One such re-
gime was in the presence of substantial transmission-mitigat-
ing interventions (R, = 1.15) and a vaccine with 80% or higher
transmission blocking effects. A second regime was charac-
terized by substantial transmission-mitigating interventions
(Ro = 1.15) and either rollout speeds of at most 0.2% per day
or vaccine supplies of at most 25% of the population. The
third regime was characterized by vaccines with very low ef-
ficacy in older adults, very high efficacy in younger adults,
and declines in efficacy starting at age 59 or 69. The ad-
vantage of prioritizing all adults or adults 20-49 vs. adults
60+ was small under these conditions. Thus, we conclude
that for mortality reduction, prioritization of older adults is
a robust strategy that will be optimal or close to optimal to
minimize mortality for virtually all plausible vaccine charac-
teristics.

In contrast, the ranking of infection-minimizing strategies
for mid-epidemic vaccination led to consistent recommenda-
tions to prioritize adults 20-49 across efficacy values and
countries. For pre-transmission vaccination, prioritization
shifted toward children and teenagers for leaky vaccine effi-
cacies 50% and below, in line with prior work (7), as well as
for vaccines with weak transmission-blocking properties. Be-
cause a vaccine is likely to have properties of both leaky and
all-or-nothing models, empirical data on vaccine perfor-
mance could help resolve this difference in model recommen-
dations, although data are difficult to obtain in practice [see,
e.g., (33, 34)].

It is not yet clear whether the first-generation of COVID-
19 vaccines will be approved everywhere for the elderly or
those under 18 (35-37). While our conclusions assumed that
the vaccine would be approved for all age groups, the evalu-
ation approaches introduced here can be tailored to evaluate
a subset of approaches restricted to those within the age
groups for which a vaccine is licensed, using open-source
tools such as those that accompany this study. Furthermore,
while we considered three possible goals of vaccination—
minimizing cumulative incidence, mortality, or YLL—our
framework can be adapted to consider goals such as minimiz-
ing hospitalizations, ICU occupancy (7) or economic costs
(10).

We demonstrated that there is value in pairing individual-
level serological tests with vaccination, even when account-
ing for the uncertainties in seroprevalence estimates (32) and
seroreversion (30). The marginal gain in effective vaccine
supply, relative to no serological testing, must be weighed
against the challenges of serological testing prior to vaccina-
tion. Serostatus itself is an imperfect indicator of protection,
and the relationship of prior infection, serostatus, and pro-
tection may change over time (10, 27, 30, 3I). Delays in sero-
logical tests results would impair vaccine distribution, but
partial seronegative-targeting effects might be realized if
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those with past PCR-confirmed infections voluntarily depri-
oritized their own vaccinations.

The best performing strategies depend on assumptions
about the extent of a population’s interactions. We used pre-
pandemic contact matrices (38), reflecting the goal of a re-
turn to pre-pandemic routines once a vaccine is available, but
more recent estimates of age-stratified contact rates could be
valuable in modeling mid-pandemic scenarios (39, 40).
Whether pre-pandemic or mid-pandemic contact estimates
are representative of contact patterns during vaccine rollout
remains unknown and may vary based on numerous social,
political, and other factors. The scenarios modeled here did
not incorporate explicit non-pharmaceutical interventions,
which might persist if vaccination coverage is incomplete, but
are implicitly represented in Scenario 1 (R, = 1.15) .

Our study relies on estimates of other epidemiological pa-
rameters. In local contexts, these include age-structured se-
roprevalence and IFR, which vary by population (19, 20, 41).
Globally, key parameters include the degree to which anti-
bodies protect against reinfection or severity of disease and
relative infectiousness by age. From vaccine trials, we also
need evidence of efficacy in groups vulnerable to severe out-
comes, including the elderly. Additionally, it will be critical
to measure whether a vaccine that protects against sympto-
matic disease also blocks infection and transmission of SARS-
CoV-2 (42).

The role of children during this pandemic has been un-
clear. Under our assumptions about susceptibility by age,
children are not the major drivers of transmission in commu-
nities, consistent with emerging evidence (12). Thus, our re-
sults differ from the optimal distribution for influenza
vaccines, which prioritize school-age children and adults age
30-39 (5). However, the relative susceptibility and infectious-
ness of SARS-CoV-2 by age remain uncertain. While it is un-
likely that susceptibility to infection conditional on exposure
is constant across age groups (12), we ran our model to test
the sensitivity of this parameter. Under the scenario of con-
stant susceptibility by age, vaccinating those under 20 has a
greater impact on reducing cumulative cases than those 20-
49 (figs. S14 and 15).

Our study is subject to a number of limitations. First, our
evaluation strategy focuses on a single country at a time, ra-
ther than on between-population allocation (43). Second, we
only consider variation in disease severity by age. However,
other factors correlate with disease outcomes, such as treat-
ment and healthcare access and comorbidities, which may
correlate with factors like rural vs urban location, socioeco-
nomic status, sex (44, 45), and race and ethnicity (46), that
are not accounted for in this study. Inclusion of these factors
in a model would be possible, but only with statistically
sound measurements of both their stratified infection risk,
contact rates, and disease outcomes. Even in the case of age
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stratification, contact surveys have typically not surveyed
those 80 years and older, yet it is this population that suffers
dramatically more severe COVID-19 disease and higher infec-
tion fatality rates. We extrapolated contact matrices to those
older than 80, but direct measurements would be superior.
Last, our study focused on guiding strategy rather than
providing more detailed forecasting or estimates (10). As
such, we have not made detailed parameter fits to time series
of cases or deaths, but rather have used epidemiologic models
to identify robust strategies across a range of transmission
scenarios.

Our study also considers variation in disease risk only by
age, via age-structured contact matrices and age-specific sus-
ceptibility, while many discussions around COVID-19 vaccine
distribution have thus far focused on prioritizing healthcare
or essential workers (47, 48). Contact rates, and thus infection
potential, vary greatly not only by occupation and age but
also by living arrangement (e.g., congregate settings, dormi-
tories), neighborhood and mobility (49-52), and whether the
population has a coordinated and fundamentally effective
policy to control the virus. With a better understanding of
population structure during the pandemic, and risk factors of
COVID-19, these limitations could be addressed. Meanwhile,
the robust findings in favor of prioritizing those age groups
with the highest IFR to minimize mortality could potentially
be extended to prioritize those with comorbidities that pre-
dispose them to a high IFR, since the strategy of prioritizing
the older age groups depends on direct rather than indirect
protection.

Vaccine prioritization is not solely a question of science
but a question of ethics as well. Hallmarks of the COVID-19
pandemic, as with other global diseases, are inequalities and
disparities. While these modeling efforts focus on age and
minimizing incidence and death within a simply structured
population, other considerations are crucial, from equity in
allocation between countries to disparities in access to
healthcare, including vaccination, that vary by neighborhood.
Thus, the model’s simplistic representation of vulnerability
(age) should be augmented by better information on the cor-
relates of infection risk and severity. Fair vaccine prioritiza-
tion should avoid further harming disadvantaged
populations. We suggest that, after distribution, pairing sero-
logical testing with vaccination in the hardest hit populations
is one possible equitable way to extend the benefits of vac-
cination in settings where vaccination might otherwise not
be deemed cost-effective.
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Fig. 1. Impacts of vaccine prioritization strategies on mortality and infections. (A) Distribution of vaccines for
five prioritization strategies: under 20, adults 20-49, adults 20+, adults 60+ and all ages. (B and C) Example
simulation curves show percentage of the total population infected over time and (F and G) cumulative mortality
for no vaccines (grey dashed lines) and for five different prioritization strategies [colored lines matching (A)],
with 10% [(B) and (F)] and 30% [(C) and (G)] vaccine supply. Summary curves show percent reductions in (D
and E) infections and (H and I) deaths in comparison to an unmitigated outbreak for vaccine supplies between
1% and 50% after 365 days of simulation. Squares and diamonds show how the outputs from single simulations
[(F) and (G)] correspond to points in summary curves (H). Grey shading indicates period during which vaccine
is being rolled out at 0.2% of total population per day. Black dots indicate breakpoints at which prioritized
demographic groups have been 70% vaccinated, after which vaccines are distributed without prioritization.
These simulations assume contact patterns and demographics of the United States (38, 56532) and an all-or-
nothing, transmission-blocking vaccine with 90% vaccine efficacy and Ry = 1.5) (Scenario 2) and (Ro = 1.15)
(Scenario 1).
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Fig. 2. Mortality-minimizing vaccine prioritization strategies across reproductive numbers Ry and countries.

Heatmaps show the prioritization strategies resulting in maximum reduction of mortality for varying values of
the basic reproductive number Ro (A and B) and across nine countries (C, D, and E), for vaccine supplies between
1% and 50% of the total population, for an all-or-nothing and transmission blocking vaccine, 90% vaccine
efficacy. (A, B) Shown: contact patterns and demographics of the United States (38, 53); [(C), (D), and (E)]
Shown: contact patterns and demographics of POL, Poland; ZAF, South Africa; CHN, China; BRA, Brazil; ZWE,
Zimbabwe; ESP, Spain; IND, India; USA, United States of America; BEL, Belgium, with Ry and rollout speeds as

indicated.
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Fig. 3. Effects of age-dependent vaccine efficacy on the impacts of prioritization strategies. (A) Diagram of
hypothetical age-dependent vaccine efficacy shows decrease from 90% baseline efficacy to 50% efficacy among
individuals 80+ beginning at age 60 (dashed line). (B and C) Percent reduction in deaths in comparison to an
unmitigated outbreak for transmission-blocking all-or-nothing vaccines with either constant 90% efficacy for all
age groups (solid lines) or age-dependent efficacy shown in (A) (dashed lines), covering Scenario 1 [0.2%
rollout/day, Ro = 1.15; (B)] and Scenario 2 [0.2% rollout/day, Ro = 1.5 (C)]. Black dots indicate breakpoints at
which prioritized demographic groups have been 70% vaccinated, after which vaccines are distributed without
prioritization. Shown: contact patterns and demographics of the United States (38, 53); all-or nothing and
transmission blocking vaccine.
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Fig. 4. Effects of existing seropositivity on the impacts of prioritization strategies. Percent reductions in (A)
infections, (B) deaths, and (C) years of life lost (YLL) for prioritization strategies when existing age-stratified
seroprevalence is incorporated [August 2020 estimates for New York City; mean seroprevalence 26.9% (28)]. Plots
show reductions for Scenario 2 (0.2% rollout/day, Ro = 1.5) when vaccines are given to all individuals (solid lines) or
to only seronegatives (dashed lines), inclusive of 96% serotest sensitivity, 99% specificity (54), and approximately
three months of seroreversion (supplementary materials, materials and methods) (29). Shown: U.S. contact
patterns and demographics (38, 53); all-or-nothing and transmission-blocking vaccine with 90% vaccine efficacy.
See figs. S12 and S13 for lower and higher seroprevalence examples, respectively.
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