Letters

RESEARCH LETTER

Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth With and Without COVID-19

Physiologic adaptations and changes in immune regulation may increase the risk of morbidity and mortality in pregnant women with respiratory infections.^{1,2} The effects of coronavirus disease 2019 (COVID-19) in pregnancy have not been fully delineated. We compared the clinical characteristics and outcomes of hospitalized women who gave birth with and without COVID-19.

Methods | Women giving birth and discharged between April 1 and November 23, 2020, were identified by *International Statistical Classification of Diseases and Related Health Problems,*

Table 1. Baseline Characteristics of Pregnant Women Giving Birth by Coronavirus Disease 2019 (COVID-19) Status

	No. (%)					
Characteristic	Without COVID-19 (n = 400 066) With COVID-19 (n = 6380)					
Age, mean, y	29.1 (5.8)	28.3 (6.2)	<.001			
Age, category, y						
<24 92 181 (23.0) 1897 (29.7)						
25-34	233 663 (58.4)	3368 (52.8)	<.001			
35-44	73 314 (18.3)	1097 (17.2)				
≥45	908 (0.2)	18 (0.3)				
Race/ethnicity						
Black, non-Hispanic	ack, non-Hispanic 57 584 (15.0) 1091 (17.6)					
Hispanic	67 654 (17.7)	2634 (42.6)	<.001			
Other/unknown	38 761 (10.1)	739 (11.9)				
White, non-Hispanic	218 735 (57.2)	1723 (27.8)				
Black and/or Hispanic	125 238 (31.3)	3725 (58.4)				
Discharge month						
April	66 056 (16.5)	778 (12.2)	<.001			
May	67 330 (16.8)	1017 (15.9)				
June	63 684 (15.9)	948 (14.9)				
July	66 610 (16.6)	1454 (22.8)				
August	65 442 (16.4)	1228 (19.2)				
September	53 485 (13.4)	697 (10.9)				
October	17 307 (4.3)	252 (3.9)				
November	152 (0.0)	6 (0.1)				
Region						
Midwest	90 994 (22.9) 982 (15.4) 58 990 (14.8) 1581 (24.9)		<.001			
Northeast						
South	182 971 (46.0)	3055 (48.0)				
West	65 015 (16.3)	740 (11.6)				
Setting						
Urban hospital	345 776 (86.9)	5696 (89.6)	<.001			
Teaching hospital	191 810 (48.2)	3706 (58.3)				
Trimester						
Second	3420 (0.9)	88 (1.4)				
Third	393 246 (98.3)	6243 (97.8)	<.001			
Missing data	3400 (0.9)	49 (0.8)				
Comorbidity						
Obesity	60 428 (15.1)	1094 (17.1)	<.001			
Morbid obesity	15 925 (4.0)	289 (4.5)	.03			
Hypertension	19 117 (4.8)	288 (4.5)	.33			
Gestational hypertension	29 584 (7.4)	381 (6.0)	<.001			
Diabetes	5716 (1.4)	132 (2.1)	<.001			
Gestational diabetes	38 066 (9.5)	667 (10.5)	.01			
Pulmonary disease	24 687 (6.2)	329 (5.2)	<.001			
Smoking	18 606 (4.7)	92 (1.4)	<.001			
Renal disease	1073 (0.3)	27 (0.4)	.02			

jamainternalmedicine.com

© 2021 American Medical Association. All rights reserved.

Tenth Revision (ICD-10) codes within the Premier Healthcare Database, an all-payer database encompassing approximately 20% of US hospitalizations.³ Race and ethnicity were self-reported, and COVID-19 status (*ICD-10* code U07.1), comorbidities, and in-hospital outcomes were identified using *ICD-10* and billing codes (eTables 1 and 2 in the Supplement). Discharge disposition and in-hospital death were reported in all patients.

Data were collected and deidentified by Premier Inc, which curates the Premier Healthcare Database, then analyzed at Brigham and Women's Hospital in Boston, Massachusetts. The Mass General Brigham Institutional Review Board approved

+

Supplemental content

the study protocol and waived the requirement for patient informed consent. Multivariable logistic regres-

sion was used to derive a propensity model estimating the probability of COVID-19 (eMethods in the Supplement). Associations between COVID-19 and in-hospital outcomes were examined using propensity score-adjusted regression. Factors associated with in-hospital death or mechanical ventilation use among pregnant women with COVID-19 were identified using forward stepwise logistic regression (eMethods in the Supplement). Analyses were conducted using Stata, version 15.0 (Stata Corp) with a 2-tailed *P* value less than .05 considered significant. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.⁴

Results | Among the 406 446 women hospitalized for childbirth over the 8 months of the study, 6380 (1.6%) had COVID-19. Compared with pregnant women without COVID-19 (n = 400 066), the women with COVID-19 were younger and more often Black and/or Hispanic and with diabetes and obesity (**Table 1**).

Of the 6380 women with COVID-19 who gave birth, 6309 (98.9%) were discharged to home, 212 (3.3%) needed intensive care, 86 (1.3%) needed mechanical ventilation, and 9 (0.1%) died in the hospital (**Table 2**). Although in-hospital mortality was low, it was significantly higher in the women with

Table 2. In-Hospital Outcomes of Pregnant Women Giving Birth According to Coronavirus Disease 2019 (COVID-19) Status

	No. (%) Without COVID-19	With COVID-19			
Outcome	(n = 400 066)	(n = 6380)	P value	Unadjusted OR (95% CI)	Adjusted OR (95% CI) ^a
Cesarean delivery	109 865 (27.5)	1847 (28.9)	.01	1.08 (1.02-1.14)	1.07 (1.02-1.13)
Preterm labor	16 137 (4.0)	332 (5.2)	<.001	1.31 (1.17-1.46)	1.19 (1.06-1.33)
Preterm birth ^b	23 234 (5.8)	459 (7.2)	<.001	1.26 (1.14-1.38)	1.17 (1.06-1.29)
Stillbirth	1289 (0.3)	34 (0.5)	.003	1.66 (1.18-2.33)	1.23 (0.87-1.75)
Preeclampsia	27 078 (6.8)	564 (8.8)	<.001	1.36 (1.22-1.46)	1.21 (1.11-1.33)
Eclampsia	288 (0.1)	8 (0.1)	.12	1.74 (0.86-3.52)	1.56 (0.77-3.16)
HELLP syndrome	989 (0.2)	33 (0.5)	<.001	2.10 (1.48-2.97)	1.96 (1.36-2.81)
Myocardial infarction	18 (0.0)	8 (0.1)	<.001	27.90 (12.13-64.20)	30.89 (12.56-75.99)
Stroke	14 (0.0)	0	.64	NA	NA
VTE	268 (0.1)	15 (0.2)	<.001	3.52 (2.09-5.92)	3.43 (2.01-5.82)
Thrombotic event ^c	300 (0.1)	22 (0.3)	<.001	4.61 (2.99-7.11)	4.47 (2.87-6.96)
Intensive care	1747 (0.4)	212 (3.3)	<.001	7.84 (6.78-9.06)	6.47 (5.55-7.55)
Mechanical ventilation	212 (0.1)	86 (1.3)	<.001	25.77 (20.03-33.15)	23.70 (17.95-31.29)
Renal replacement therapy	238 (0.1)	12 (0.2)	<.001	NA	NA
Chest imaging ^d	4122 (1.0)	748 (11.7)	<.001	NA	NA
Discharge disposition					
Home	398 388 (99.6)	6309 (98.9)		NA	NA
Postacute care	197 (0.0)	13 (0.2)	. 001	NA	NA
Death	20 (0.0)	9 (0.1)	<.001	28.26 (12.86-62.08)	26.07 (11.26-60.38)
Hospice	74 (0.0)	1 (0.0)		NA	NA
Other	1387 (0.3)	48 (0.8)		NA	NA
Length of stay, mean, d	2.4 (2.5)	2.8 (3.4)	<.001	NA	NA
Length of stay, category, d				NA	NA
≤2	267 177 (66.8)	4099 (64.3)	< 001	NA	NA
3	91 690 (22.9)	1387 (21.7)	<.001	NA	NA
>3	41 199 (10.3)	894 (14.0)		NA	NA

Abbreviations: HELLP, preeclampsia with hemolysis, elevated liver enzymes, low platelet count; NA, not applicable; OR, odds ratio; VTE, venous thromboembolism. ^b Preterm birth was defined as preterm labor with childbirth, premature rupture of membranes with subsequent childbirth, preterm newborn, or a newborn with a very low birth weight.

^c Thrombotic event was defined as the composite of myocardial infarction, ischemic stroke, venous thromboembolism, or arterial thrombosis.

a function of 15 baseline covariates: age, race/ethnicity, geographic region, urban population, teaching hospital, discharge month, trimester, hypertension, gestational hypertension, diabetes, gestational diabetes, kidney disease, pulmonary disease, tobacco use, and obesity. The propensity score was defined as the logit of the predicted probability of COVID-19 status.

^a Adjusted for propensity score, which estimates the probability of COVID-19 as

^d Chest imaging included radiography, computed tomography, and computed tomography angiography of the chest.

E2 JAMA Internal Medicine Published online January 15, 2021

COVID-19 than in those without COVID-19 (141 [95% CI, 65-268] vs 5.0 [95% CI, 3.1-7.7] deaths per 100 000 women). Rates of myocardial infarction and venous thromboembolism (VTE) were higher in the women with COVID-19 who gave birth than in those without COVID-19 (myocardial infarction: 0.1% vs 0.004%; VTE: 0.2% vs 0.1%; P < .001). COVID-19 was associated with higher odds of preeclampsia (adjusted odds ratio [aOR], 1.21 [95% CI, 1.11-1.33]) and preterm birth (aOR, 1.17 [95% CI, 1.06-1.29]) but not with significantly higher odds of still-birth (aOR, 1.23 [95% CI, 0.87-1.75]). Use of chest imaging, intensive care treatment, and mechanical ventilation was higher among the women who gave birth with COVID-19 compared with those without COVID-19 (Table 2).

Among women with COVID-19 who gave birth, age (OR, 1.91 [95% CI, 1.31-2.77] per 10 years), morbid obesity (OR, 3.85 [95% CI, 2.05-7.21]), diabetes (OR, 4.51 [95% CI, 2.10-9.70]), kidney disease (OR, 21.57 [95% CI, 7.73-60.10]), eclampsia (OR, 116.1 [95% CI, 22.91-588.50]), thrombotic events (OR, 45.10 [95% CI, 17.13-118.8]), and stillbirth (OR, 7.88 [95% CI, 2.39-25.98]) were associated with higher odds of mechanical ventilation use or in-hospital death.

Discussion | In a large national cohort of US women hospitalized for childbirth, we found that absolute rates of death and adverse events in those diagnosed with COVID-19 were low, as might be expected in a young population in whom the disease may have been detected incidentally. Although the absolute risk differences were small, in-hospital death, VTE, and preeclampsia were considerably higher among women who gave birth with COVID-19 than in those without COVID-19. The present findings confirm previously reported mortality rates and indicate a higher risk of VTE in women diagnosed with COVID-19 in the setting of childbirth.^{5,6} Limitations include potential misclassification by ICD-10 codes, lack of confirmatory testing and imaging findings, information on disease severity, the inability to distinguish asymptomatic from symptomatic COVID-19 cases, low event rates, and residual confounding.

The higher rates of preterm birth, preeclampsia, thrombotic events, and death in women giving birth with COVID-19 highlight the need for strategies to minimize risk. As studies investigating therapies for COVID-19 have largely excluded pregnant women, the data also underscore the importance of including this population in clinical trials of treatments and vaccines.

Karola S. Jering, MD Brian L. Claggett, PhD Jonathan W. Cunningham, MD Ning Rosenthal, MD, PhD Orly Vardeny, PharmD, MS Michael F. Greene, MD Scott D. Solomon, MD

Author Affiliations: Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Jering, Claggett, Cunningham, Solomon); Premier Applied Sciences, Premier Inc, Charlotte, North Carolina (Rosenthal); Center for Care Delivery and Outcomes Research, Minneapolis VA Health Care System, Minneapolis, Minnesota (Vardeny); Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston (Greene).

Accepted for Publication: December 29, 2020.

Published Online: January 15, 2021. doi:10.1001/jamainternmed.2020.9241

Corresponding Author: Scott D. Solomon, MD, Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (ssolomon@bwh.harvard.edu).

Author Contributions: Drs Jering and Solomon had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Jering, Cunningham, Claggett.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Jering, Solomon.

Critical revision of the manuscript for important intellectual content: All authors. *Statistical analysis:* Jering, Claggett, Cunningham, Greene.

Obtained funding: Solomon.

Administrative, technical, or material support: Jering.

Supervision: Solomon.

Conflict of Interest Disclosures: Dr Jering reports being supported by a postdoctoral training grant from the National Heart, Lung, and Blood Institute (NHLBI) (T32HL007604). Dr Claggett reports receiving personal fees from Amgen, Boehringer Ingelheim, Corvia Medical, MyoKardia, and Novartis outside the submitted work. Dr Cunningham reports being supported by a postdoctoral training grant from NHLBI (T32HL094301). Dr Rosenthal reports being an employee of Premier Inc, which curates the Premier Healthcare Database used in this study. Dr Vardeny reports receiving research support from NHLBI, grant support from AstraZeneca and Bayer, and personal fees from the American Heart Association, Novartis, and Sanofi Pasteur outside the submitted work. Dr Solomon reports receiving grants from Actelion, Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, Bristol Myers Squibb, Celladon, Cytokinetics, Eidos, Gilead Sciences, GlaxoSmithKline, Ionis Pharmaceuticals, LoneStar Heart, Mesoblast, MyoKardia, NeuroTronik, NHLBI, Novartis, Novo Nordisk, Respicardia, Sanofi Pasteur, and Theracos, as well as personal fees from Abbott, Actelion, Akros, Alnylam Pharmaceuticals, Amgen, Arena, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Cardior Pharmaceuticals, Cardurion Pharmaceuticals. Corvia Medical. Cvtokinetics. Daiichi Sankvo. Gilead Sciences. GlaxoSmithKline, Ironwood Pharmaceuticals, Eli Lilly, Merck, MyoKardia, Novartis, Roche, Takeda, Theracos, Quantum Genetics, Cardurion Pharmaceuticals. AOBiome. Janssen. Cardiac Dimensions. Sanofi Pasteur. Tenaya, DiNAQOR, Tremeau Pharmaceuticals, CellProthera, and Moderna outside the submitted work. No other disclosures were reported

Additional Contributions: We thank Muthiah Vaduganathan, MD, MPH, and Ankeet Bhatt, MD, of Brigham and Women's Hospital for their thoughtful contributions to the study design and revisions of this article. They were not compensated for their contributions.

Additional Information: Qualified researchers can apply for data access directly to Premier Inc.

1. Chen Y-H, Keller J, Wang I-T, Lin C-C, Lin H-C. Pneumonia and pregnancy outcomes: a nationwide population-based study. *Am J Obstet Gynecol*. 2012; 207(4):288.e1-288.e7. doi:10.1016/j.ajog.2012.08.023

2. Adhikari EH, Moreno W, Zofkie AC, et al. Pregnancy outcomes among women with and without severe acute respiratory syndrome coronavirus 2 infection. *JAMA Netw Open*. 2020;3(11):e2029256. doi:10.1001/jamanetworkopen.2020.29256

3. Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. *JAMA Netw Open*. 2020;3(12):e2029058. doi:10.1001/jamanetworkopen.2020.29058

4. Vandenbroucke JP, von Elm E, Altman DG, et al; STROBE initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. *Ann Intern Med*. 2007;147(8):W163-94. doi:10.7326/0003-4819-147-8-200710160-00010-w1

5. Zambrano LD, Ellington S, Strid P, et al; CDC COVID-19 Response Pregnancy and Infant Linked Outcomes Team. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status—United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1641-1647. doi:10.15585/mmwr.mm6944e3

6. Knight M, Bunch K, Vousden N, et al; UK Obstetric Surveillance System SARS-CoV-2 Infection in Pregnancy Collaborative Group. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2

jamainternalmedicine.com

Letters

infection in UK: national population based cohort study. *BMJ*. 2020;369:m2107. doi:10.1136/bmj.m2107